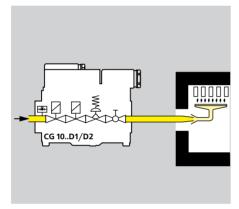


Компактные блоки клапанов

CG 10





Компактные блоки CG 10

- Встроенный сетчатый фильтр, 2 клапана безопасности и серворегулятор давления с высокой точностью регулирования.
- // Особо бесшумные клапаны.
- Возможность подключения датчикареле давления на входе.
- Прост в обслуживании; все устройства регулирования и измерения находятся с одной стороны.
- Регулирование расхода для точной установки пропускной способности.
- Экологическая безвредность из-за использования чистых материалов; все пластмассовые детали с указанием состава.
- Испытаны и сертифицированы по EG-Baumuster. Разрешены к применению в РБ, РФ, Украине.
- **∥** (€

CG 10..D1/D2

Область применения

мощностью до 50 кВт.

во взаимосвязи с EN 126.

Для надёжного регулирования инжек-

ционных, паяльных горелок и напорных котлов на отопительных установках

Блоки CG..G, CG..V2 и CG..V3 в соответ-

ствии с TRD 412 могут также применять-

Компактные блоки клапанов испытаны

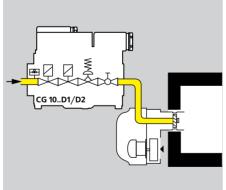
по EG-Baumuster и сертифицированы в

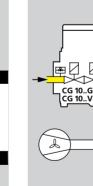
соответствии с требованиями к газопо-

требляющим приборам (90/396/EWG)

ся на паровых котельных установках.

CG..D1 CG..D2 Плиты


CG..D1 CG..D2 Установки, 1-


CG..D1

CG..D2

1-ступенчатые специальные отопительные котлы, настенные котлы, смесители

ступенчатые напорные горелки, горелки с механическим регулированием мощности.

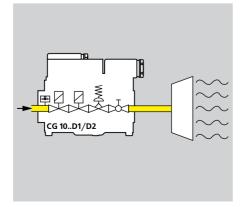
CG..G*

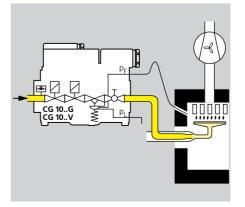
Напорные котлы с плавным или многоступенчатым регулированием

CG..V

Напорные котлы и котлы с вентилятором, плавного или 2ступенчатого регулирования.

CG..G*

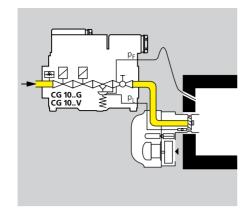

Котлы с дымососом.


CG..V

Котлы с дымососом.

CG..D1

*CG..G без штуцера для отбора давления из камеры горения р


CG..G*

Напорные горелки с плавным или 2ступенчатым регулированием.

CG..V

Напорные горелки с плавным или ступенчатым регулированием.

*CG..G без штуцера для забора давления из камеры горения р_г

Принцип работы

После подачи напряжения открываются оба электромагнитные клапана. Серворегулятор давления обеспечивает высокую точность регулирования в зависимости от изменения входного давления.

Отличительные черты

- 2 эл-магнитных клапана класса А или В.
- СG..D1 с регулятором постоянного давления.
- СG..D2 с регулятором постоянного давления и стартовой ступенью.
- CG..G с регуляторами постоянства

давления, соотношение давления газ / воздух 1:1.

- СG..V2 и СG..V3 с регулятором пропорциональности давления, соотношение давления газ/воздух 2:1 или 3:1.
- Датчик-реле давления DG..С на входе не может быть установлен самостоятельно.
- С регулированием расхода.

Технические характеристики

Тип газа: природный, сжиженный (газообразный).

Диапазон входного давления p_e : от 15 до 70 мбар.

Рабочая температура: от 0 до +70°C. Температура хранения: от –20 до +50°C.

Резьба: Rp 1/2 по ISO 7-1. Резьбовое присоединение управляющих проводов p₁, p₌: Rp 1/8

управляющих проводов p_L , p_F: Rp 1/8 (только CG..G, CG..V2 и CG..V3)

Места забора давления: на входе и выходе. Материал корпуса: сплав AlSi.

Материал мембраны: пербунан.

Сетка: пластмассовый нетканный материал. Электромагнитные клапаны класса A и B с подпружиненной запорной тарелью, нормально закрыты.

Частота включения: произвольно.

Время закрытия: <1c. Напряжение питания: 230 В, -15/+10 %, 50/60 Гц, $\cos \phi = 1$ 206 В, -15/+10 %, пост. напряжение 24 В, ± 15 %, 50/60 Гц, $\cos \phi = 1$ 20 В, ± 15 %, постоянное напряжение.

Потребляемая мощность: Клапан класса А: 24 Вт

Клапан класса В: 18 Вт

Мощность при включении и продолжительной работе одинакова.

ПВ: 100 % ED.

Степень защиты: ІР 54.

Предохранитель: макс. 6,3 А плавкий.

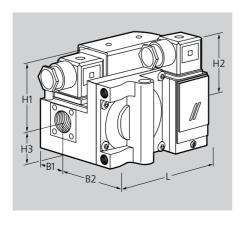
Электроприсоедиение:

Штекер по ISO 4400 с кабельным вво-

дом: Ра 11.

Монтажное положение

На вертикальном трубопроводе: произвольно, на горизонтальном - отклонение от вертикали макс. 90° влево / вправо, катушкой вверх, см. также CG..D2: принцип работы.


N 1
206 V=, 20 V= PE ⊕ ←⊕ + _{V2} 2 ← V1 + _{V1} 3 ← V2
DGC COM 3-← NO 2-← PE ⊕-←⊕

220 V~. 24 V~

PE ⊕ -(**-**-⊕

Тип	Резьба	Размеры							ре макс.	P	Bec
				Ду	L	H1*	H2	H3	B1	B2	
			MM	MM	MM	MM	MM	MM	мбар	ВА/Вт	ΚΓ
CG 10A	$Rp^{1}/_{2}$	15	116	74	64	33	30	63	70	24	1,4
CG 10B	$Rp^{1}/_{2}$	15	116	59	64	33	30	63	70	18	1,2

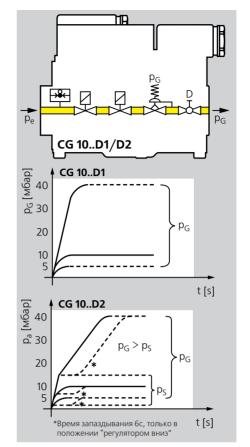
^{*} с выпрямляющим устройством + 22 мм

CG..D1, CG..D2

С регулятором постоянного давления класса С с высокой точностью регулирования для инжекционных или 1-ступенчатых напорных горелок.

Принцип работы: при подаче напряжения открываются оба клапана.

CG..D1: давление на выходе возрастает до величины р_G.


CG..D2: давление на выходе возрастает сначала до величины p_s. Затем оно плавно повышается до величины р_G.

В положении "регулятором вниз" при достижении стартового давления р₅ давление около 6 с остаётся стабильным. Затем оно плавно повышается до величины p_G.

СG..D1: давление на выходе p_{G} устанавливается пружиной от 5 до 40 мбар.

CG..D2: стартовое давление ps устанавливается от 2 до 15 мбар, давление на выходе p_G от 5 до 40мбар.

CG..G, CG..V2 и CG..V3

С регулятором постоянства или пропорциональности давления класса С для точного пневматического регулирования состава смеси для напорных котлов и горелок с плавным или 2-ступ. регулированием.

Принцип работы: при подаче напряжения открываются оба клапана. Затем CG регулирует давление на выходе p_G. Оно изменяет-СЯ В ЗАВИСИМОСТИ ОТ УПРАВЛЯЮЩЕГО ДАВЛЕНИЯ воздуха р₁. Соотношение между давлением газа и воздуха постоянно. В области малой мощности горелки установка газовоздушной смеси производится с помощью параллельного сдвига характеристик. Настройка осуществляется при помощи установочного винта "N" Установка полной мощности происходит через дроссель горелки D. На CG..V2 и CG..V3 давление в камере горения p_E корректирует отключение горелки.

Область рабочего давления:

допустимое давление газа на выходе: $p_G =$ от 0,4 до 30 мбар.

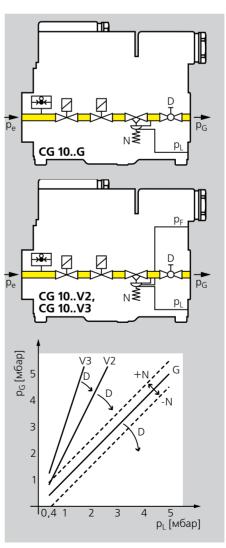
допустимое давление воздуха:

 $p_1 = \text{ от 0,4 до 10 мбар.}$

Область сдвига нулевой точки N:

CG..G: ±0,2 мбара. CG..V2: ±0,4 мбара. CG..V3: ±0,6 мбара.

Соотношение давления газ / воздух:


CG..G: примерно 1:1 CG..V2: примерно 2:1 CG..V3: примерно 3:1.

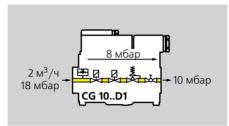
допустимое давление в камере горения:

 $p_F = ot - 2 дo + 5 мбар.$

мин. разница управляющего давления:

 $p_{L} - p_{F} = 0,4$ мбара.

Пример подбора прибора


Исходные данные: Тип газа: природный

мин. входное давление p_e : 18 мбар макс. пропуск. способность V_{max} : 2 м 3 /ч макс. давление на выходе p_G : 10 мбар

CG..D1, CG..D2

Потеря давления Δp во всём блоке рассчитывается следующим образом:

$$\Delta p = p_e - p_G$$

= 18 - 10 мбар
= 8 мбар

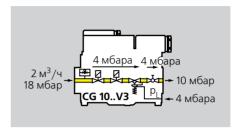
Рабочая точка Р1 ($V_{max}=2~m^3/ч;~\Delta p=8~m$ бар) должна находиться в рабочей области компактного блока CG 10.

CG..G, CG..V2, CG..V3

дополнительные исходные данные макс. давление воздуха горелки р₁: 4 мбар

Определение передаточного соотношения U:

$$U = \frac{p_G}{p_L} = \frac{10}{4} = 2,5$$


Выбираем тип регулятора с ближайшим большим соотношением U_{\min} .

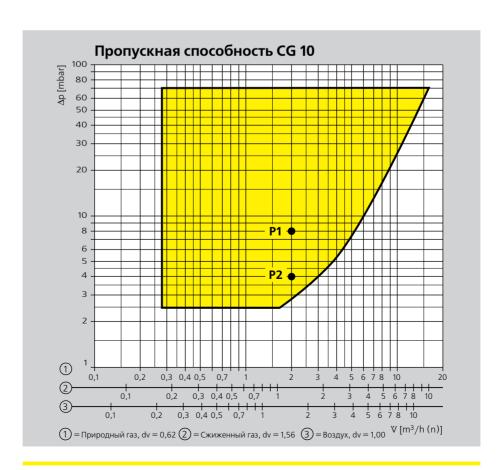
Регулятор "G" →
$$U_{min} = 1$$
 ($U_{max} = 1$)
Регулятор "V2" → $U_{min} = 1,9$ ($U_{max} = 2,3$)
Регулятор "V3" → $U_{min} = 2,9$ ($U_{max} = 3,5$)

Фактическая потеря давления Δp рассчитывается так:

$$\Delta p = p_e - U_{max} * p_L$$

= 18 - 3,5 * 4 M6apa
= 4 M6apa

Рабочая точка Р2: ($V_{max} = 2 \text{ м}^3/\text{ч}$; $\Delta p = 4 \text{ мбар}$) должна находиться в рабочей области компактного блока CG 10.


Чтобы получить требуемое давление на выходе $p_G=10$ мбар необходимо к рассчитанное потере давления $\Delta p=4$ мбар добавить ещё 4 мбара через регулирование мощности.

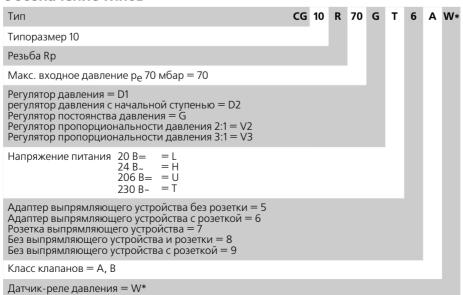
При малой мощности нельзя превышать величину пропускной способности V_{min} (см. диаграмму).

Все компактные блоки CG

Если рабочая точка не находится в рабочей области СG 10 отрегулировать входное давление p_e , V, p_G или p_I .

При работе с другими мощностями мы рекомендуем другие блоки CG. См. также CG 1, 2, 3 проспект 5.1.2.2.

Принадлежности


Компактные блоки клапанов СG 10 могут при изготовлении оснащаться датчиком-реле давления для газа DG..С на входе для контроля давления газа. Заводская установка: 14 мбар.

Электроприсоединение: штекер по ISO 4400 с кабельным вводом Pg 11. Фланец Ду 15 поставляется прямого или углового исполнения.

Для работы с переменным напряжением поставляются как выпрямляющее устройство с адаптером, так и выпрямляющее устройство со штекером.

Обозначение типов

Сохраняем за собой права на технические изменения.

> Кромшрёдер выпускает экологически чистую продукцию. Спрашивайте наш экологический отчёт.

* Если "без", то соответствующая буква обозначения не указывается.